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1. Introduction.

Let L be a finite-dimensional Lie algebra over an algebraically closed field F of characteristic
p ≥ 5. An element x ∈ L, x 6= 0, is an absolute zero divisor if (ad x)2 = 0 [K1]. (In more recent
terminology x is sometimes referred to as a sandwich element [Z].) In the early 60’s Kostrikin
[K2] showed that these elements play a fundamental role in the structure theory of simple modular
Lie algebras over prime characteristic. He called a Lie algebra containing an absolute zero divisor
strongly degenerate and made the following bold conjecture which was proved 20 years later by
Premet [Pr]:

Kostrikin’s Conjecture. Any finite dimensional simple Lie algebra over an algebraically closed
field of prime characteristic is either classical or strongly degenerate.

Block and Wilson [B-W] proved that all restricted simple Lie algebras are of either classical or
of Cartan type. Recently, Strade and Wilson [St-W] have completed the classification for all simple
Lie algebras (for p > 7) and have shown that these Lie algebras are also either of classical or Cartan
type. The classical Lie algebras are the simple Lie algebras admitting a non-degenerate quotient
trace form [Se2] and thus cannot be strongly degenerate. Therefore, Kostrikin’s conjecture, along
with these classification theorems, implies that, in the case of restricted simple Lie algebras, the
Cartan type Lie algebras are exactly the ones with the strong degeneracy property.

In this paper we would like to illustrate a type of degeneracy which occurs in the block theory
for Lie algebras of Cartan type. Recall if L is a classical Lie algebra then L has an simple module
which is also projective [Hu3]. One often calls this the Steinberg module. It follows that U(L),
the restricted universal enveloping algebra [Ja], has at least two blocks or equivalently at least two
central primitive idempotents. Our first objective will be to show this does not happen for Lie
algebras of Cartan type, that is, if L is a Lie algebra of Cartan type, then U(L) has precisely one
block (ie. no non-trivial central idempotents). A restricted Lie algebra will be of one block type if
its restricted universal enveloping algebra has one block. In contrast to the complex semisimple Lie
algebras, where the center of the universal enveloping algebra has no non-trivial nil ideals by the
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Harish-Chandra homomorphism theorem [Hu2], the center of the restricted universal enveloping
algebra for a Lie algebra of Cartan type will be isomorphic to a finite-dimensional local algebra. Let
L = ⊕m

i=−nLi be a graded restricted Lie algebra. Later we will show how to compute the Cartan
invariants of U(L) relative to the Cartan invariants of U(L0). In particular for graded Lie algebras
of Cartan type the problem of computing Cartan invariants will reduce to determining the Cartan
invariants for the “classical” L0 component. The authors would like to express their gratitude to
Professor George B. Seligman for his help and assistance throughout this work.

2. Restricted Lie algebras with Triangular Decompositions.

Let L be a restricted Lie algebra which admits a triangular decomposition relative to a maximal
torus T :

L = N−
L ⊕ T ⊕N+

L

where N−
L and N+

L are p-nilpotent restricted subalgebras. Set B±
L = T ⊕ N±

L . We say that this
decomposition for L is long if

dimF N−
L < dimF N+

L .

By the standard arguments [Hu2] the simple modules for L are in one-to-one correspondence with
weights on the torus. Since we will be only considering restricted representations (ie. representa-
tions for U(L)) the simple modules will be parametrized by the set T̂ of “restricted weights” [Se1].
Given such an L we will provide theorems which give sufficient conditions to insure that U(L) has
precisely one block. In the next section we will show that the graded Lie algebras of Cartan type
satisfy these conditions. We begin with a lemma which characterizes modules for certain subalge-
bras which will be contained in these Lie algebras of Cartan type. For M , a U(L) module, let [M ]
denote the formal sum of composition factors in the Grothendieck ring of U(L).

Lemma 2.1. Let Q be a restricted Lie algebra with a triangular decomposition relative to a maximal
torus T :

Q = N−
Q ⊕ T ⊕N+

Q .

Assume the following:

(1) N−
Q ⊕N+

Q is a p-ideal in Q and
(2) N+

Q contains dimF T linearly independent
weight vectors having linearly independent weights in T̂ .

For each λ ∈ T̂ set V (λ) = D̄λ⊗U(B−Q) U(Q) where D̄λ is a one dimensional simple U(B−
Q) module

corresponding to weight λ. Then [V (λ)] is independent of λ and

[V (λ)] =
∑

µ∈T̂

pβ [Dµ]
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where β = dimF N+
Q − dimF T , and Dµ is the one dimensional simple U(Q) module of weight µ.

Proof. By assumption (1), N−
Q ⊕ N+

Q is a p-ideal in Q which is p-nilpotent. It follows that Q =
T ⊕ radp(Q) where radp(Q) = N−

Q ⊕ N+
Q is the largest p-nilpotent ideal of Q. This implies Q

is completely solvable. Hence, all the restricted representations for Q are one dimensional [S-F]
and we can let {Dµ : µ ∈ T̂} represent the set of non-isomorphic simple U(Q) modules. In the
case of completely solvable Lie algebras the composition factors for a module can be obtained by
finding its weight space decomposition. From assumption (2) as U(T ) module U(N+

Q ) must have
all possible weights occurring with the same multiplicity, pβ , where β = dimF N+

Q −dimF T . Hence,
all possible one-dimensional irreducible modules must occur with multiplicity pk in V (λ) (since the
weight space decomposition is obtained by looking at U(N+

Q ) as U(T ) module and “shifting” by
λ).¤

Theorem 2.2. Let L be a restricted Lie algebra which admits a long triangular decomposition:

L = N−
L ⊕ T ⊕N+

L .

Set V ±(σ) = Dσ ⊗U(B±L ) U(L) for all σ ∈ T̂ . Assume the following;

(1) L has a restricted subalgebra Q, satisfying the assumptions in Lemma 2.1.
(2) B−

Q = B−
L and

(3) N−
Q = N−

L has at least dimF T linearly independent weight vectors having linearly indepen-
dent weights in T̂ .

Then
[V −(λ)] =

∑

µ∈T̂

pβ [V +(µ)] (†)

where β = dimF N+
L − dimF N−

L − dimF T .

Proof. First we will show [V −(λ)] is independent of λ ∈ T̂ . By the previous lemma we have:

[V −(λ)] = [Dλ ⊗U(B−L ) U(L)]

= [[Dλ ⊗U(B−L ) U(Q)]⊗U(Q) U(L)]

=
∑

µ∈T̂

pk[Dµ ⊗U(Q) U(L)]

where k = dimF Q− dimF N−
L . Therefore, [V −(λ)] is independent of λ.



4 RANDALL R. HOLMES AND DANIEL K. NAKANO

Now using assumption (3) and the fact that the assumption holds when we replace N−
Q with N+

Q

(because of the hypotheses on Q) it follows that

[Dλ ⊗U(T ) U(L)] = [Dλ ⊗U(T ) U(B±
L )⊗U(B±L ) U(L)] =

∑

µ∈T̂

pk± [Dµ ⊗U(B±L ) U(L)]

where k± = dimF N±
L . Since dimF N+

L > dimF N−
L we have

∑

µ∈T̂

[Dµ ⊗U(B−L ) U(L)] =
∑

µ∈T̂

pk+−k− [Dµ ⊗U(B+
L ) U(L)].

But, [V −(λ)] is independent of λ ∈ T̂ . Therefore, for all λ ∈ T̂

pdimF T [V −(λ)] =
∑

µ∈T̂

pk+−k− [V +(µ)]

and
[V (λ)] =

∑

µ∈T̂

pk+−k−−dimF T [V +(µ)].¤

There exist restricted Lie algebras admitting long decompositions which do not satisfy the con-
ditions of Lemma 2.1. However, the following is a theorem which provides conditions in which (†)
(in Theorem 2.2) still holds.

Theorem 2.3 ([N], Thm 3.1.2.). Let L be a restricted Lie algebra with a long triangular decom-
position:

L = N−
L ⊕ T ⊕N+

L .

Assume that there exists a subalgebra Q such that

(1) B−
L ⊂ Q,

(2) Q is a classical Lie algebra and
(3) a vector space complementary to Q, in L, contains dimF T weight vectors having linearly

independent weights in T̂ .

Then
[V −(λ)] =

∑

µ∈T̂

pβ [V +(µ)]

where β = dimF N+
L − dimF N−

L − dimF T .
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Corollary 2.4. If L is a restricted Lie algebra satisfying the assumptions in Theorem 2.2 or
Theorem 2.3 then U(L) has one block.

Proof. Let P(µ) be a projective indecomposable module for U(L) with simple head L(µ). Moreover,
let V −(µ) be the Verma module with simple head L(µ). Since P(µ) is projective and V −(µ) has
a unique maximal submodule there exists a surjective homomorphism P(µ) ³ V −(µ). Therefore,
all the composition factors of V −(µ) must be composition factors of P(µ). According to Theorem
2.2. or Theorem 2.3. V −(µ) has every irreducible occuring as a factor, hence the same must be
true for P(µ).¤

From standard theorems in [Cu-R] we can deduce information about the structure of the center
of the u-algebra when there is only one central idempotent.

Corollary 2.5. Let L be a restricted Lie algebra satisfying the assumptions in either Theorem 2.2
or Theorem 2.3. Then the center of U(L) is isomorphic to a finite-dimensional local algebra.

3. The Lie algebras of Cartan type are of one block type.

Throughout this section we will use the conventions and notation in [S-F]. The restricted uni-
versal enveloping algebras for the Lie algebras of types W and K were shown in [N] to have one
block by using Theorem 2.3. We will extend these results to all the graded restricted Lie algebras
of Cartan type by finding a subalgebra Q satisfying the conditions of Theorem 2.2.

Type W (W(n,1) for n>1 and p>3).

For W (1, 1) there exists no subalgebra Q satisfying the hypotheses of Theorem 2.2. In this case
use Theorem 2.3. Let L = W (n, 1), n > 1. Then L = L−1 ⊕ L0 ⊕ L1 ⊕ ...Lt with Li = 〈xaDj :
| a |= i + 1〉, | a |= ∑n

i=1 ai. From the gradation one obtains a long triangular decomposition
L = N− ⊕ T ⊕N+ with

N− = ⊕i<0Li ⊕ 〈xεiDj : i > j〉
T = 〈xεj Dj : j = 1, 2, ...n〉
N+ = ⊕i>0Li ⊕ 〈xεiDj : i < j〉.

Set Q = N−
Q ⊕ T ⊕N+

Q where N−
Q = N− and N+

Q = 〈xaD1 : a1 = 0, | a |≥ 2〉.
In order to prove that Q is a subalgebra satisfying (1) in lemma 2.1 it suffices to prove that

N−
Q ⊕N+

Q is closed under brackets. It is clear that [N+
Q , N+

Q ] ⊂ N+
Q . Moreover,

[Dj , x
aD1] = −xa−εj D1.
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This is in N+
Q if | a |≥ 3. If | a |= 2 then it is in 〈xεiDj : i > j〉. For i > j we have

[xεiDj , x
aD1] = δi,1x

aDj − xεixa−εj D1 = −xεixa−εj D1

which is still in N+
S .

For condition (2) of the lemma 2.1 observe that the element x3ε2D1 has weight (−1, 3, 0, ...0)
and for 2 ≤ i < n the element x2εiD1 has weight (−1, 0, 0, ...0) + 2εi with respect to the maximal
torus T . It is easy to see that these weights are linearly independent.

Type S (S(n,1) for n>2 and p>3).

Let L = S(n, 1). For each pair i, j ∈ {1, 2, ...n} define Dij : A(n, 1) → W (n, 1) by

Dij(f) = Dj(f)Di −Di(f)Dj .

Then L = 〈Dij(f) : f ∈ A(n, 1), 1 ≤ i < j ≤ n〉. The maps above induce a grading: L =
L−1 ⊕ L0 ⊕ L1 ⊕ ...Lt with Lk = 〈Dij(xa) : | a |= k − 2〉. Set Q = N−

Q ⊕ T ⊕N+
Q with

N−
Q = 〈Dj : 1 ≤ j ≤ n〉 ⊕ 〈xεiDj : i > j〉

T = 〈xεj Dj − xεj+1Dj+1 : j = 1, 2, ...n− 1〉
N+

Q = 〈D1j(xa) = xa−εj D1 : a1 = 0, | a |≥ 3〉.

First observe that [N+
Q , N+

Q ] = 0. Moreover, we have

[xεiDj , x
a−εkD1] = −xεixa−εk−εj D1and

[Dj , x
a−εkD1] = −xa−εk−εj D1.

The last element is in N+
Q if | a |≥ 4. If | a |= 3 then it is in 〈xεiDj : i > j〉. Therefore, N−

Q ⊕N+
Q

is an ideal contained in the subalgebra Q and (1) of Lemma 2.1 is satisfied.

Now set βi = (0, 1, ...1,
i
2, ...2) for 2 ≤ i ≤ n. Then for 2 ≤ i ≤ n − 1 D1i(xβi) has weight

(−2, 0, ...0,
i−1, 0, ...0) while D1n(xβn) has weight (−2, 0, ...0) with respect to T . Hence (2) is satisfied

for S(n,1).

Type H (H(2r,1) n=2r for n>1 p>3).

Let L = H(2r, 1). We have a map DH : A(2r, 1) → H(2r, 1) given by

DH(f) =
r∑

j=1

Dj(f)Dj+r −
2r∑

j=r+1

Dj(f)Dj−r
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with H(2r, 1) = 〈DH(xa) : 0 ≤ ai ≤ p− 1〉. The map DH induces a grading on L: L = L−1⊕L0⊕
L1 ⊕ ...Lt where Li = 〈DH(xa) : | a |= i− 2〉.

Now set Q = N−
Q ⊕ T ⊕N+

Q where

N−
Q = 〈Dj : j = 1, 2, ...n〉 ⊕ 〈DH(xεi+εj ) : i, j ≥ r or (i < r, j ≥ r and j − r < i)〉

T = 〈DH(xεj+εj+r ) : j = 1, 2, ...r〉
N+

Q = 〈DH(xa) : ai = 0 for i ≤ r, | a |≥ 3〉

Once again one can easily check that [N+
Q , N+

Q ] = 0 and [N−
Q , N+

Q ] ⊂ N+
Q . (If i, j satisfy i < r,

j ≥ r and j − r < i then [DH(xεi+εj ), DH(xa)] is in the span of DH(xa+εj−εi+r )). Therefore,

N−
Q ⊕ N+

Q is an ideal in Q. Moreover, observe that DH(x3εi+r−1) has weight (0, ...0,
i−3, 0, ...0) so

the conditions of Lemma 2.1 are satisfied.

Type K (K(2r+1,1) n=2r+1 n>1 p>3).

Let L = K(2r + 1, 1), n = 2r + 1. There exists a linear isomorphism DK : A(n, 1) → K(n, 1)
defined by DK(f) =

∑n
j=1 fjDj where

fj = xεj Dn(f)−Dj+r(f) for 1 ≤ j ≤ r

fj = xεj Dn(f) + Dj−r(f) for r + 1 ≤ j ≤ 2r

fn = 2f −
r∑

j=1

xεj fj+r +
2r∑

j=r+1

xεj fj−r

We obtain a grading L = L−2 ⊕ L−1 ⊕ ...Lt by setting Li = 〈DK(xa) : | a |= i − 2〉 where
| a |= ∑2r

i=1 ai + 2an. Let Q = N−
Q ⊕ T ⊕N+

Q with

N−
Q = 〈DK(1)〉 ⊕ 〈DK(xεi) : 1 ≤ i ≤ 2r〉
⊕ 〈DK(xεi+εj ) : r < i, j ≤ 2r or (i ≤ r, r < j ≤ 2r, j − r < i)〉

T = 〈DK(xεj+εj+r ) : 1 ≤ j ≤ r〉 ⊕ 〈D(xεn)〉
N+

Q = 〈DK(xa) : ai = 0 for i ≤ r, i = n, | a |> 2〉

One can check, as in the case where L is of type H, that [N+
Q , N+

Q ] = 0 and [N−
Q , N+

Q ] ⊂ N+
Q . More-

over, for 1 ≤ i ≤ r, DK(x3εi+r )has weight (0, ...0,
i
3, 0, ..0, 1) and DK(x4ε2r ) has weight (0, ...0, 4, 2)

which yields dimF T linearly independent weights.
We found a subalgebra Q for types L = W, S, , H and K which satisfies the assumption in

Lemma 2.1 so condition (1) of Theorem 2.2 is satisfied. In each case it is easy to see that B−
Q = B−

L
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so (2) in Theorem 2.2. holds. Now let V = L−1 for types W, S and H. From [S-F] V is the standard
module for the reductive Lie algebra L0. Hence V has dimF T linearly independent weight vectors
having linearly independent weights in T̂ . For type K L0

∼= sp(2r)⊕ F . Again from [S-F] L−1 is
the standard sp(2r) module and L−2 is the trivial sp(2r) module with 1 ∈ F acting as a non-zero
scalar on L−2, hence V = L−2⊕L−1 has dimF T linearly independent weight vectors having linearly
independent weights. Since V ⊂ N−

Q = N−
L (3) of Theorem 2.2 holds and by Corollary 2.4 U(L)

has precisely one block.

4. Cartan Invariants for Graded Lie Algebras.

Let L = ⊕m
i=−nLi be a restricted graded Lie algebra and set N+ = ⊕i>0Li, N− = ⊕i<0Li and

B± = N± ⊕ L0. With this decomposition U(L) satisfies the axioms stated in [Ho-N] and thus a
“Brauer-type reciprocity” (described below) must hold.

Let {L(λ) : λ ∈ T̂} ({L(λ) : λ ∈ T̂}) denote the set of simple modules of U(L) (U(L0)), and
for each λ ∈ T̂ let P(λ) (P (λ)) be the projective indecomposable module with head L(λ) (L(λ)).
Moreover, let s be the number of isomorphism classes of simple U(L) (U(L0)) modules. Set

V ±
proj(λ) = P (λ)⊗U(B±) U(L) and

V ±
irr(λ) = L(λ)⊗U(B±) U(L).

Moreover, let DV ±
irr(µ) = (L(µ)∗⊗U(B±) U(L))∗ and DV ±

proj = (P (µ)∗⊗U(B±) U(L))∗ for all µ ∈ T̂ .
(N∗ is the contragredient (dual) module of N .) It follows from [Ho-N] and [N] that

[P(λ) : V ±
proj(µ)] = [DV ∓

irr(µ) : L(λ)],

and if U(L0) is a symmetric algebra then

[P(λ) : V ±
irr(µ)] = [DV ∓

proj(µ) : L(λ)].

The symbols on the left hand side of the equality indicate the number of times V ±
proj(µ) (resp.

V ±
irr(µ)) appears in a V erma module series for P(λ). This number was shown to be well-defined

in [Ho-N]. The symbols on the right hand side indicate how many times the simple module L(λ)
appears in a Jordan−Holder series for D∓Virr(µ) (resp. D∓Vproj(µ)).

Now assume L0 has a triangular decomposition with respect to a maximal torus T for L and
L0: L0 = N−

L0
⊕ T ⊕ N+

L0
, and L0 is graded with the torus as zero component. The triangular

decomposition for L0 will induce a long triangular decomposition for L:

L = N−
L ⊕ T ⊕N+

L
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by setting N±
L = N± ⊕ N±

L0
and B±

L = T ⊕ N±
L . We will obtain a decompostion of the Cartan

matrix for U(L) into a product of matrices involving the Jantzen matrices for L0 and matrices
which indicate how the generalized V erma modules [Sh] decompose.

Set cλ,µ = [P(λ) : L(µ)]; then C = (cλ,µ) is the Cartan matrix for U(L). We need to first show
that P(λ) has a filtration with factors isomorphic to Verma modules V (µ) = Dµ ⊗U(BL) U(L). By
[Ho-N] P(λ) is filterable in terms of generalized V erma modules V −

proj = P (µ)⊗U(B−) U(L). From
the BGG reciprocity law for classical Lie algebras P (µ) as B− module is filterable in terms of the
modules

W (σ) = Dσ ⊗U(B−L0
) U(L0)

with Li acting trivially for i < 0. We claim that

W (σ)⊗U(B−) U(L) ∼= Dσ ⊗U(B−L ) U(L).

This follows from the fact that for each σ

Dσ ⊗U(B−L ) U(L) ∼= (Dσ ⊗U(B−L ) U(B−))⊗U(B−) U(L)

and the observation that
W (σ) ∼= Dσ ⊗U(BL) U(B−)

as U(B−) modules. Hence P(λ) is filterable in terms of V (µ) modules. The same argument in
[Ho-N] can be used to prove that the [P(λ) : V (µ)] is well-defined. Now we can write

[P(λ) : L(µ)] =
∑

γ∈T̂

[P(λ) : Dγ ⊗U(B−L ) U(L)][Dγ ⊗U(B−L ) U(L) : L(µ)].

If one lets bλ,γ = [P(λ) : Dγ ⊗U(B−L ) U(L)], dγ,µ = [Dγ ⊗U(B−L ) U(L) : L(µ)], B = (bλ,γ) and
D = (dγ,µ), then C = BD. We will first decompose D.

Since L has a long triangular decomposition it follows from Theorem 2.2 that

[Dγ ⊗U(B−L ) U(L)] =
∑

σ∈T̂

pβ [Dσ ⊗U(B+
L ) U(L)]

where β = dimF N+
L − dimF N−

L − dimF T . Hence,

dγ,µ =
∑

σ∈T̂

pβ [Dσ ⊗U(B+
L ) U(L) : L(µ)].
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Next observe that

[Dσ ⊗U(B+
L ) U(L) : L(µ)] = [Dσ ⊗U(B+

L ) U(B+)⊗U(B+) U(L) : L(µ)]

=
∑

ρ∈T̂

[Dσ ⊗U(B+
L ) U(B+) : L(ρ)][L(ρ)⊗B+ U(L) : L(µ)]

Recall that the simple modules for U(B−) are obtained from the simple modules for U(L0) by
letting N− act trivially. Therefore, for all σ, ρ ∈ T̂ we have

[Dσ ⊗U(B+
L ) U(B+) : L(ρ)] = [(Dσ ⊗U(B+

L ) U(B+)) |L0 : L(σ)]

= [Dσ ⊗U(B+
L0

) U(L0) : L(σ)].

Now let jσ,ρ = [Dσ⊗U(B+
L0

)U(L0) : L(ρ)], kρ,µ = [L(ρ)⊗U (B+)U(L) : L(µ)], J = (jσ,ρ), K = (kρ,µ)

and A = (pβ) where β = pdimF N+
L−dimF N−

L −dimF T . Then D = AJK.

Next we will decompose B. The reciprocity law hold for the V (µ) by using the same arguments
in [Ho-N], so it follows that

bλ,γ = [P(λ) : Dγ ⊗U(B−L ) U(L)]

= [(D∗
γ ⊗U(B+

L ) U(L))∗ : L(λ)] (†)
= [D∗

γ ⊗U(B+
L ) U(L) : L(λ)∗].

By applying the same arguments used in finding the decomposition of D we have

[D∗
γ⊗U(B+

L ) : L(λ)∗] =
∑

α∈T̂

[D∗
γ ⊗U(B+

L ) U(B+) : L(α)][L(α)⊗U(B+) U(L) : L(λ)∗]

=
∑

α∈T̂

[D∗
γ ⊗U(B+

L0
) U(L0) : L(α)][L(α)⊗U(B+) U(L) : L(λ)∗].

Set J ′ = ([D∗
γ ⊗U(B+

L0
) U(L0)]) and K ′ = ([L(α) ⊗U(B+) U(L) : L(λ)∗]). Then B = K ′T J ′T . In

summary we state:

Theorem 4.1. Let L be a restricted Lie algebra satisfying the assumptions in this section. Then
the Cartan matrix for U(L) can be written a product of sxs matrices:

C = K ′T J ′T AJK

where
J = ([Dα ⊗U(B+

L0
) U(L0) : L(τ)]), J ′ = ([D∗

γ ⊗U(B+
L0

) U(L0) : L(τ)]),
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K = ([L(τ)⊗U(B+) U(L) : L(λ)]), K ′ = ([L(σ)⊗U(B+) U(L) : L(µ)∗]) and

A = (a) where a = pdimF N+
L−dimF N−

L −dimF T .

The decomposition of C in Theorem 4.1 takes a simpler form if L safisfies the following additional
assumption.

Hypothesis 4.2. There exists a one to one correspondence φ : T̂ −→ T̂ , with

[(D∗
γ ⊗U(B+

L ) U(L))∗] = [Dφ(γ) ⊗U(B+
L ) U(L)].

By replacing (D∗
γ ⊗U(B+

L ) U(L))∗ by Dφ(γ) ⊗U(B+
L ) U(L) in (†) we can write B = KJ ′T where

J ′ = ([Dφ(γ) ⊗U(B+
L0

) U(L0) : L(α)]). Moreover, the matrix A has the same number in each entry

so permuting the columns of J ′T does not change the product J ′T A. Therefore, if L satisfies
Hypothesis 4.2 then the following theorem holds.

Theorem 4.3. Let L be a restricted Lie algebra the assumptions in this section along with Hy-
pothesis 4.2. Then the Cartan matrix for U(L) can be written as a product of matrices

C = (JK)T A(JK)

where
J = ([Dα ⊗U(B+

L0
) U(L0) : L(τ)]) K = ([L(τ)⊗U(B+) U(L) : L(λ)]),

A = (a) with a = pdimF N+
L−dimF N−

L −dimF T .

In particular the Cartan matrix is symmetric.

The Lie algebras of Cartan type satisfy the conditions stated in this section. For L = W (m, 1),
S(m, 1) or H(2m, 1) (resp.) there is a grading such that L = L−1 ⊕ L0 ⊕ L1 ⊕ ...Ln where L0 is
isomorphic to gl(m), sl(m) or sp(2m) (resp.). In the case where L = K(m, 1), L = L−2 ⊕ L−1 ⊕
L0⊕L1⊕...Ln where L0 = sp(2m)⊕F . With all Lie algebras of Cartan type the L0 has a triangular
decomposition relative to a maximal torus for both L0 and L. Furthermore, L0 is either classical
or reductive so L0 has a grading with the maximal torus as the zero component [Ho-N]. We saw
in section 3 that the negative and positive parts of this triangular decomposition can be coupled
with the negative and positive parts of the grading to obtain a long triangular decomposition for
L which satisfy the assumptions in this section.

In [Sh] Shen classifies all restricted irreducible modules for the Lie algebras W(m,1), S(m,1) and
H(m,1) and decomposes the generalized Verma modules L(τ)⊗U(B+) U(L). This in turn allows us
to state the following theorems, proven for W(m,1) in [N], which generalize to S(m,1) and H(m,1).
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Theorem 4.4. For L = W (m, 1), S(m, 1) and H(m, 1) there exists a one to one correspondence
φ : T̂ −→ T̂ such that

[(L(µ)⊗U(B+) U(L))∗] = [L(φ(µ))⊗U(B+) U(L)].

By using Theorem 4.4. and the fact that in the classical L0 component φ : T̂ −→ T̂ preserves
linkage classes we obtain:

Corollary 4.5. If L = W (m, 1), S(m, 1) and H(m, 1) then there exists a one to one correspon-
dence φ : T̂ −→ T̂ between Verma modules such that

[(Dµ ⊗U(B+
L ) U(L))∗] = [Dφ(µ) ⊗U(B+

L ) U(L)].

Therefore, W (m, 1), S(m, 1), and H(m, 1) satisfy Hypothesis 4.2 and we can apply Theorem
4.3. to get a decomposition of the Cartan matrix C = (JK)T A(JK). For the classical Lie algebra
sl(2) Pollack [Po1] [Po2] computed the Cartan invariants. In [N] the Cartan matrix was computed
for the Cartan type Lie algebras L = W (1, n) and W (2, n). Next we will show how to compute
Cartan invariants for L = H(2, 1). In doing so we will complete the explicit computation of Cartan
invariants and the dimension of the projective covers for the restricted universal enveloping algebras
associated with the restricted simple toral rank one Lie algebras.

Let L = H(2, 1) be the Hamiltonian algebra of dimension p2 − 2. From section 3 we know that
L has a grading L−1 ⊕ L0 ⊕ L1 ⊕ ...Ln such that L0

∼= sp(2) ∼= sl(2). Pollack [Po1] calculated the
multiplicities of simple modules in the Verma modules for sl(2). From his results we can write

J =




1 1 0 0 . . . . . . . . . 0
1 1 0 0 . . . . . . . . . 0
0 0 1 1 . . . . . . . . . 0
0 0 1 1 . . . . . . . . . 0
...

...
...

...
. . .

...
...

...
...

...
...

...
... 1 1 0

...
...

...
...

... 1 1 0
0 . . . . . . . . . . . . . . . 0 1




with rows and columns parmetrized by the set of weights

0, p− 2, 1, p− 3, ...
p− 1

2
,

p− 3
2

, p− 1.
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Shen [Sh] decomposed the generalized Verma modules L(λ) ⊗U(B+) U(L) for L = H(2, 1). As
elements in the Grothendick ring we have

[L(λ)⊗U(B+) U(L)] = [L(λ)] for λ 6= 0, 1

[L(0)⊗U(B+) U(L)] = 2[L(0)] + [L(1)]

[L(1)⊗U(B+) U(L)] = 4[L(0)] + 2[L(1)]

with

dimFL(λ) = (λ + 1)p2 λ 6= 0, 1

dimFL(0) = 1 dimFL(1) = p2 − 2.

Therefore,

K =




2 0 1 0 0 . . . . . . 0
0 1 0 0 0 . . . . . . 0
4 0 2 0 0 . . . . . . 0
0 0 0 1 0 . . . . . . 0
0 0 0 0 1 0 . . . 0

0 . . . . . . . . . . . .
. . . . . . 0

...
...

...
...

...
...

. . .
...

0 . . . . . . . . . . . . . . . . . . 1




with rows and columns parametrized in the same manner as J . The matrix A has all entries equal
to pp2−10. Hence,

C = (JK)T A(JK) = pp2−10




144 24 72 24 . . . 24 12
24 4 12 4 . . . 4 2
72 12 36 12 . . . 12 6
24 4 12 4 . . . 4 2
...

...
...

...
...

...
...

24 4 12 4 . . . 4 2
12 2 6 2 . . . 2 1




Theorem 4.6. The projective indecomposable modules for U(L) where L = H(2, 1) have the fol-
lowing dimensions

dimFP(0) = 12pp2−6

dimFP(1) = 6pp2−6

dimFP(p− 1) = pp2−6

dimFP(λ) = 2pp2−6 for λ 6= 0, 1, p− 1.
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Moreover, these projective modules can be expressed in terms of sums of Grothendick ring elements
as follows.

[P(0)] = 144pp2−10[L(0)] + 72pp2−10[L(1)] +
p−2∑

j=2

24pp2−10[L(j)] + 12pp2−10[L(p− 1)]

[P(1)] = 72pp2−10[L(0)] + 36pp2−10[L(1)] +
p−2∑

j=2

12pp2−10[L(j)] + 6pp2−10[L(p− 1)]

[P(p− 1)] = 12pp2−10[L(0)] + 6pp2−10[L(1)] +
p−2∑

j=2

2pp2−10[L(j)] + pp2−10[L(p− 1)]

[P(λ)] = 24pp2−10[L(0)] + 12pp2−10[L(1)] +
p−2∑

j=2

4pp2−10[L(j)] + 2pp2−10[L(p− 1)]

for λ 6= 0, 1, p− 1

In conclusion we would like to state a conjecture which may lead to further study in connection
with the structure and representation theory of restricted Lie algebras.

Conjecture. If L is a strongly degenerate restricted Lie algebra and L contains no classical or
toral ideals then U(L) has precisely one block.
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